题目内容

19.已知过点F(0,1),且斜率为k的直线l与抛物线E:x2=4y相交于A,B两点,与圆F:x2+(y-1)2=1相交于C,D两点,其中,点A,C在第一象限.
(1)求|AC|×|BD|的值;
(2)过点C作圆F的切线l,当$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

分析 (1)由已知可知,直线l方程为y=kx+1,代入抛物线方程消去y,结合抛物线的定义,即可得出结论.
(2)求出过点C作圆F的切线l的方程,令x=0可得y,利用$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

解答 解:(1)设A(x1,y1)、B(x2,y2),
由已知可知,直线l方程为y=kx+1,代入抛物线方程消去y,得x2-4kx-4=0,
∴x1+x2=4k,x1x2=-4,
∴y1y2=kx1x2+(x1+x2)+1=1
则|AC|×|BD|=(y1+1-1)(y2+1-1)=y1y2=1;
(2)y=kx+1代入圆F:x2+(y-1)2=1可得C($\sqrt{\frac{1}{1+{k}^{2}}}$,k$\sqrt{\frac{1}{1+{k}^{2}}}$+1),
∴过点C作圆F的切线l的方程为y-k$\sqrt{\frac{1}{1+{k}^{2}}}$-1=-$\frac{1}{k}$(x-$\sqrt{\frac{1}{1+{k}^{2}}}$),
令x=0,可得y=(k+$\frac{1}{k}$)$\sqrt{\frac{1}{1+{k}^{2}}}$+1=$\sqrt{\frac{1}{{k}^{2}}+1}$+1,
∵$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$,
∴3≤$\frac{1}{{k}^{2}}$≤8
∴3≤y≤4.

点评 抛物线的定义,可以将抛物线上的点到焦点的距离转化为到准线的距离.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网