题目内容
5.已知X~N(0,σ2),且P(-2≤X<0)=0.4,则P(X>2)=( )A. | 0.2 | B. | 0.1 | C. | 3 | D. | 0.4 |
分析 本题考查正态分布曲线的性质,随机变量ξ服从正态分布N(0,σ2),由此知曲线的对称轴为Y轴,可得P(0≤X≤2)=0.4,即可得出结论.
解答 解:∵随机变量ξ服从正态分布N(0,σ2),且P(-2≤X≤0)=0.4,
∴P(0≤X≤2)=0.4,
∴P(X>2)=0.5-0.4=0.1.
故选:B.
点评 本题考查正态分布曲线所表示的意义,解题的关键是正确正态分布曲线所表示的意义,由曲线的对称性求出概率.
练习册系列答案
相关题目
10.若sin2xsin3x=cos2xcos3x,则x的值是( )
A. | $\frac{π}{10}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{5}$ | D. | $\frac{π}{4}$ |
17.由于工业化城镇化的推进,大气污染日益加重,空气质量逐步恶化,雾霾天气频率增大,大气污染可引起心悸、胸闷等心脏病症状.为了解某市患心脏病是否与性别有关,在某医院心血管科随机的对入院50位进行调查得到了如下列联表:问有多大的把握认为是否患心脏病与性别有关.答( )
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
患心脏病 | 不患心脏病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. | 95% | B. | 99% | C. | 99.5% | D. | 99.9% |
14.已知函数$f(x)=\sqrt{x}$和g(x)=alnx,曲线y=f(x)和y=g(x)有交点且在交点处有相同的切线,则a=( )
A. | $\frac{e}{3}$ | B. | $\frac{e}{2}$ | C. | $\frac{2e}{3}$ | D. | e |