题目内容
如果a<0,b<0,则必有( )
(A)a3+b3≥ab2+a2b (B)a3+b3≤ab2+a2b
(C)a3+b3>ab2+a2b (D)a3+b3<ab2+a2b
B
【解析】(a3+b3)-(ab2+a2b)
=(a3-ab2)-(a2b-b3)
=a(a2-b2)-b(a2-b2)
=(a2-b2)(a-b)
=(a-b)2(a+b),
由于a<0,b<0,所以(a-b)2≥0,a+b<0,
于是(a3+b3)-(ab2+a2b)≤0,
故a3+b3≤ab2+a2b.
练习册系列答案
相关题目