题目内容
【题目】抛物线 ( )的焦点为 ,已知点 , 为抛物线上的两个动点,且满足 .过弦 的中点 作抛物线准线的垂线 ,垂足为 ,则 的最大值为__________.
【答案】1
【解析】设,在三角形ABF中,用余弦定理得到
,
故最大值为1.
故答案为:1.
点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。
【题型】填空题
【结束】
17
【题目】设 的内角 , , 所对的边分别为 , , ,且 , .
(1)当 时,求 的值;
(2)当的面积为 时,求的周长.
【答案】(1) (2)8
【解析】试题分析:(1)由 , ,由正弦定理得到;(2)根据面积公式得到,再由余弦定理得到,进而得到.
解析:
(1)因为 ,所以
由正弦定理 ,可得
(2)因为 的面积
所以
由余弦定理
得 ,即
所以 ,
所以
所以, 的周长为
练习册系列答案
相关题目