题目内容
【题目】设 的内角 , , 所对的边分别为 , , ,且 , .
(1)当 时,求 的值;
(2)当的面积为 时,求的周长.
【答案】(1) (2)8
【解析】试题分析:(1)由 , ,由正弦定理得到;(2)根据面积公式得到,再由余弦定理得到,进而得到.
解析:
(1)因为 ,所以
由正弦定理 ,可得
(2)因为 的面积
所以
由余弦定理
得 ,即
所以 ,
所以
所以, 的周长为
【题型】解答题
【结束】
18
【题目】如图,在四棱锥 中,底面 是平行四边形, , , , 底面.
(1)求证: 平面 ;
(2)若 为 的中点,求直线 与平面 所成角的正弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)根据三角形的边长关系得到BD=3, , ,根据线面垂直的性质得到,进而得到线面垂直;(2)建立空间坐标系得到直线的方向向量,和面的法向量,再由向量的夹角公式得到线面角.
解析:
(1)在中由余弦定理得
,∴ ,即
又 底面 ,
所以, ,又
所以, 平面.
(2)以 为原点,分别以 、 、 为 轴、 轴、 轴,建立空间直角坐标系,则 , , , ,
所以, , , .
设平面 的法向量为
由 , ,得 ,
令 得 , ,即
设直线 与平面 所成角为 ,
则
练习册系列答案
相关题目