题目内容

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.
(Ⅰ)∵数列an}是等差数列,
∴a2•a3=45,a1+a4=a2+a3=14.
a2=3
a3=9
a2=9
a3=5

∵公差d>0,
a2=3
a3=9
,解得d=4,a1=1.
∴an=1+4(n-1)=4n-3.
(Ⅱ)∵Sn=na1+
n(n-1)d
2
=2n2-n

bn=
2Sn
2n-1
=2n,
∴f(n)=
bn
(n+25)•bn+1
=
2n
(n+25)?2(n+1)
=
n
n2+26n+5
=
1
n+
25
n
+26
1
26+2
25
n
•n
=
1
26+10
=
1
36

当且仅当n=
25
n
,即n=5时,f(n)取得最大值
1
36
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网