题目内容
【题目】用反证法证明“自然数a,b,c中恰有一个偶数”时,下列假设正确的是 ( )
A.假设a,b,c都是奇数或至少有两个偶数
B.假设a,b,c都是偶数
C.假设a,b,c至少有两个偶数
D.假设a, b,c都是奇数
【答案】A
【解析】
试题分析:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,而命题:“自然数a,b,c中至少有一个是偶数”的否定为:“a,b,c都是奇数”,故选A.
【题目】某校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | ||
男生 | 20 | 5 | |
女生 | 10 | 20 | |
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
临界值参考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
【题目】已知函数的图像两相邻对称轴之间的距离是,若将的图像先向右平移个单位,再向上平移个单位,所得函数为奇函数.
(1)求的解析式;
(2)求的对称轴及单调区间;
(3)若对任意,恒成立,求实数的取值范围.
【题目】现有甲、乙两个投资项目,对甲项目投资十万元,据对市场份样本数据统计,年利润分布如下表:
年利润 | 万元 | 万元 | 万元 |
频数 |
对乙项目投资十万元,年利润与产品质量抽查的合格次数有关,在每次抽查中,产品合格的概率均为,在一年之内要进行次独立的抽查,在这次抽查中产品合格的次数与对应的利润如下表:
合格次数 | 次 | 次 | 次 |
年利润 | 万元 | 万元 | 万元 |
记随机变量分别表示对甲、乙两个项目各投资十万元的年利润.
(1)求的概率;
(2)某商人打算对甲或乙项目投资十万元,判断哪个项目更具有投资价值,并说明理由.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为.