题目内容
【题目】已知y=f(x)是定义在(-∞,+∞)上的奇函数,且在[0,+∞)上为增函数,
(1)求证:函数在(-∞,0)上也是增函数;
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
【答案】(1)证明见解析;(2){x|-<x≤-}.
【解析】
(1)设,且,根据单调性的定义,结合函数奇偶性,即可得证;
(2)根据是R上的奇函数,把,转化为,再结合函数的单调性,得到,即可求解.
(1)设x1、x2是(-∞,0]上任意两个不相等的实数,且x1<x2,
则-x1,-x2∈[0,+∞),且-x1>-x2,Δx=x2-x1>0,Δy=f(x2)-f(x1).
因为f(x)是奇函数,且在[0,+∞)上是增函数,-x1>-x2,
所以f(-x1)>f(-x2).
又因为f(x)为奇函数,所以f(-x1)=-f(x1),f(-x2)=-f(x2),
所以-f(x1)>-f(x2),即f(x1)<f(x2),
即Δy=f(x2)-f(x1)>0,
所以函数f(x)在(-∞,0]上也是增函数.
(2)因为f(x)是R上的奇函数,所以f(0)=0,f(-)=-f()=-1,
由-1<f(2x+1)≤0,得f(-)<f(2x+1)≤f(0).
又因为f(x)在(-∞,0)上是增函数,所以-<2x+1≤0,解得-<x≤-,
所以不等式的解集为{x|-<x≤-}.
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电量最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(=1,2,…,6),如表所示:
试销单价(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
(参考公式:线性回归方程中,的最小二乘估计分别为,)