题目内容
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于分者为“成绩优良”.
(1)分别计算甲、乙两班个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班个样本中,成绩在分以下(不含分)的学生中任意选取人,求这人来自不同班级的概率;
(3)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附:
独立性检验临界值表:
【答案】(1)高效课堂更佳;(2) ;(3)能.
【解析】试题分析:(1)由题意,可根据茎叶图所提供数据,对甲乙两个班各取前10名的分数,并计算其平均值即可,由此可判断高效课堂更佳;(2)由茎叶图统计两个班60分以下的人数,再按古典概型概率的计算公式进行运算即可;(3)根据题意,由茎叶图统计列联表中的人数,根据公式算出,再比对临界值表,从而可得出结论.
试题解析:(1)甲班样本化学成绩前十的平均分为
;
乙班样本化学成绩前十的平均分为
;
甲班样本化学成绩前十的平均分远低于乙班样本化学成绩前十的平均分,大致可以判断“高效课堂”教学方式的教学效果更佳.
(2)样本中成绩分以下的学生中甲班有人,记为: ,乙班有人,记为: .
则从, 六个元素中任意选个的所有基本事件如下:
,一共有个基本事件,
设表示“这人来自不同班级”有如下:
,一共有个基本事件,
所以.
(3)
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
根据列联表中的数据,得的观测值为
,
∴能在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考:用最小二乘法求线性回归方程系数公式 ,)