题目内容
【题目】已知函数f(x)=sin2x﹣ cos2x
(1)求函数的最小正周期及函数图象的对称中心;
(2)若不等式﹣2<f(x)﹣m<2在x∈[ ]上恒成立,求实数m的取值范围.
【答案】
(1)解:f(x)=sin2x﹣ cos2x= .
函数的周期为T= .
由2x ,得x= ,
∴函数的对称中心为( ),k∈Z
(2)解:由﹣2<f(x)﹣m<2在x∈[ ]上恒成立,
得f(x)﹣2<m<f(x)+2在x∈[ ]上恒成立,
∵x∈[ ],∴2x ∈[ ],则f(x)∈[1,2],
∴0<m<3.
∴实数m的取值范围是(0,3)
【解析】利用辅助角公式化积.(1)直接利用周期公式求得周期,再由相位的终边落在x轴上求得函数图象的对称中心;(2)由x得范围求得f(x)的范围,把﹣2<f(x)﹣m<2在x∈[ ]上恒成立转化为f(x)﹣2<m<f(x)+2在x∈[ ]上恒成立得答案.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.