题目内容
2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,其夹角为θ,给出命题:p:|$\overrightarrow{a}$-$\overrightarrow{b}$|>1;q:θ∈[$\frac{π}{2}$,$\frac{5π}{6}$),则p是q的( )A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 根据向量数量积的运算公式,以及充分条件和必要条件的定义即可得到结论.
解答 解:若|$\overrightarrow{a}$-$\overrightarrow{b}$|>1,则平方得:$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2=2-2$\overrightarrow{a}$•$\overrightarrow{b}$>1,即$\overrightarrow{a}$•$\overrightarrow{b}$<$\frac{1}{2}$,
则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\overrightarrow{a}$•$\overrightarrow{b}$<$\frac{1}{2}$,
∴θ∈($\frac{π}{3}$,π],即p:θ∈($\frac{π}{3}$,π],
∵命题q:θ∈[$\frac{π}{2}$,$\frac{5π}{6}$),
∴p是q的必要不充分条件,
故选:B.
点评 本题主要考查充分条件和必要条件的判断,根据向量数量积的应用求出向量夹角是解决本题的关键.
练习册系列答案
相关题目
12.如图,一个子弹运动的轨迹是一个三次函数图象的一部分,则这个函数的解析式是( )
A. | y=-$\frac{1}{3}$x3+$\frac{5}{6}$x | B. | y=$\frac{1}{3}$x3-$\frac{11}{6}x$ | C. | y=$\frac{2}{3}{x}^{3}$-$\frac{19}{6}x$ | D. | y=$\frac{1}{16}{x}^{3}-\frac{3}{4}x$ |
13.已知i为虚数单位,则复数$\frac{1+2i}{2-i}$=( )
A. | i | B. | -i | C. | -$\frac{4}{5}$-$\frac{3}{5}$i | D. | -$\frac{4}{5}$+$\frac{3}{5}$i |
17.已知复数z=a+4i,且$\frac{z}{z+b}$=4i,其中a,b∈R,则b=( )
A. | -16 | B. | 1 | C. | 16 | D. | 17 |
7.一次考试中,五名学生的数学、物理成绩如下表所示:
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
学生 | A1 | A2 | A3 | A4 | A5 |
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.