题目内容
【题目】选修4﹣4:坐标系与参数方程
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为 ,直线l的极坐标方程为 ,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 ,试判断直线l与圆C的位置关系.
【答案】
(1)解:点A 在直线l上,得 ,∴a= ,
故直线l的方程可化为:ρsinθ+ρcosθ=2,
得直线l的直角坐标方程为x+y﹣2=0;
(2)解:消去参数α,得圆C的普通方程为(x﹣1)2+y2=1
圆心C到直线l的距离d= <1,
所以直线l和⊙C相交.
【解析】(1)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.
练习册系列答案
相关题目
【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
经济总量(亿元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,记序号为,请直接写出与的关系式;
(2)利用所给数据求经济总量与年份之间的回归直线方程;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据,
其回归直线的斜率和截距的最小二乘估计分别为:
,.