题目内容

20.设函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,求S=f($\frac{1}{2015}$)+f($\frac{2}{2015}$)…+f($\frac{2014}{2015}$)的和.

分析 可证f(x)+f(1-x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案.

解答 解:∵函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,
∴f(x)+f(1-x)=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{1-x}}{{4}^{1-x}+2}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{x}•{4}^{1-x}}{{(4}^{1-x}+2)•{4}^{x}}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{2}{{4}^{x}+2}$=1
故可得S=f($\frac{1}{2015}$)+f($\frac{2}{2015}$)…+f($\frac{2014}{2015}$)=1007×1=1007

点评 本题考查倒序相加法求和,得出f(x)+f(1-x)=1并得出所求即为1007对项的和是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网