ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÅ×ÎïÏßy2=4x£¬¹ýµãM£¨0£¬2£©µÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬ÇÒÖ±ÏßÓëxÖá½»ÓÚµãC£¨1£©ÇóÖ¤£º|MA|£¬|MC|£¬|MB|³ÉµÈ±ÈÊýÁУ»
£¨2£©Éè$\overrightarrow{MA}$=¦Á•$\overrightarrow{AC}$£¬$\overrightarrow{MB}$=¦Â•$\overrightarrow{BC}$£¬ÊÔÎʦÁ+¦ÂÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Éè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏµÈ±ÈÊýÁеÄÖÐÏîÐÔÖÊ£¬¼´¿ÉµÃÖ¤£»
£¨2£©ÔËÓÃÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬½áºÏΤ´ï¶¨Àí£¬¼ÆËã¼´¿ÉµÃµ½¶¨Öµ-1£®
½â´ð £¨1£©Ö¤Ã÷£ºÉèÖ±Ïߵķ½³ÌΪ£ºy=kx+2£¨k¡Ù0£©£¬
ÁªÁ¢·½³Ì¿ÉµÃ$\left\{\begin{array}{l}{y=kx+2}\\{{y}^{2}=4x}\end{array}\right.$µÃk2x2+£¨4k-4£©x+4=0¢Ù
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨-$\frac{2}{k}$£¬0£©£¬
Ôòx1+x2=$\frac{4-4k}{{k}^{2}}$£¬x1x2=$\frac{4}{{k}^{2}}$¢Ú
|MA|•|MB|=$\sqrt{1+{k}^{2}}$|x1-0|•$\sqrt{1+{k}^{2}}$|x2-0|=$\frac{4£¨1+{k}^{2}£©}{{k}^{2}}$£¬
¶ø|MC|2=$\sqrt{1+{k}^{2}}$|-$\frac{2}{k}$-0|2=$\frac{4£¨1+{k}^{2}£©}{{k}^{2}}$£¬
¡à|MC|2=|MA|•|MB|¡Ù0£¬
¼´ÓÐ|MA|£¬|MC|£¬|MB|³ÉµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ$\overrightarrow{MA}$=¦Á•$\overrightarrow{AC}$£¬$\overrightarrow{MB}$=¦Â•$\overrightarrow{BC}$£¬µÃ
£¨x1£¬y1-2£©=¦Á£¨-x1-$\frac{2}{k}$£¬-y1£©£¬£¨x2£¬y2-2£©=¦Â£¨-x2-$\frac{2}{k}$£¬-y2£©£¬
¼´µÃ£º¦Á=$\frac{-k{x}_{1}}{k{x}_{1}+2}$£¬¦Â=$\frac{-k{x}_{2}}{k{x}_{2}+2}$£¬
Ôò¦Á+¦Â=$\frac{-2{k}^{2}{x}_{1}{x}_{2}-2k£¨{x}_{1}+{x}_{2}£©}{{k}^{2}{x}_{1}{x}_{2}+2k£¨{x}_{1}+{x}_{2}£©+4}$
ÓÉ£¨1£©ÖТڴúÈëµÃ¦Á+¦Â=-1£¬
¹Ê¦Á+¦ÂΪ¶¨ÖµÇÒ¶¨ÖµÎª-1£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÖ±ÏߺÍÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éµÈ±ÈÊýÁеÄÐÔÖʺÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |