题目内容
【题目】已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足为B,且点A是线段BF的中点.
(I)求椭圆C的方程;
(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标.
【答案】(I).
(II)
【解析】
(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.
(I)∵椭圆的左焦点,上顶点,直线AF与直线垂直
∴直线AF的斜率,即 ①
又点A是线段BF的中点
∴点的坐标为
又点在直线上
∴ ②
∴由①②得:
∴
∴椭圆的方程为.
(II)设
由(I)易得顶点M、N的坐标为
∴直线MP的方程是:
由 得:
又点P在椭圆上,故
∴
∴
∴或(舍)
∴
∴点P的坐标为
练习册系列答案
相关题目