题目内容
4.设全集U={x∈Z|0≤x≤5},集合A=$\left\{{3,1}\right\},B=\left\{{\left.y\right|y={{log}_{\sqrt{3}}}x,x∈A}\right\}$,则∁U(A∪B)=( )A. | {0,4,5,2} | B. | {0,4,5} | C. | {4,5,2} | D. | {4,5} |
分析 利用对数的定义与运算性质,化简得B={0,2},从而得到集合A∪B={0,1,2,3},再根据全集U的元素和补集的定义,可得出集合C∪(A∪B).
解答 解:∵集合A=$\left\{{3,1}\right\},B=\left\{{\left.y\right|y={{log}_{\sqrt{3}}}x,x∈A}\right\}$,B={y|y=x,x∈A},
∴B={0,2},得A∪B={0,1,2,3}
又∵全集U={x∈z|0≤x≤5}={0,1,2,3,4,5},
∴∁∪(A∪B)={4,5}.
故选:D.
点评 本题以对数的运算为载体,求两集合并集的补集.着重考查了对数的运算、集合的并集与补集运算等知识,属于基础题.
练习册系列答案
相关题目
12.已知α,β是两个平面,直线l?α,l?β,若以①l⊥α,②l∥β,③α⊥β中两个为条件,另一个为结论构成三个命题,其中 正确的命题是( )
A. | ①③⇒②,①②⇒③ | B. | ①③⇒②,②③⇒① | C. | ①②⇒③,②③⇒① | D. | ①③⇒②,①②⇒③,②③⇒① |
16.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )
满意情况 | 不满意 | 比较满意 | 满意 | 非常满意 |
人数 | 200 | n | 2100 | 1000 |
A. | $\frac{7}{15}$ | B. | $\frac{2}{5}$ | C. | $\frac{11}{15}$ | D. | $\frac{13}{15}$ |
14.已知函数f(x)(x∈R)是偶函数,函数f(x-2)是奇函数,且f(1)=1,则f(2015)=( )
A. | 2015 | B. | -2015 | C. | 1 | D. | -1 |