题目内容
【题目】已知(
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
【答案】(1)的极大值为,无极小值;(2)①当时,在和上是增函数,在上是减函数;②当时,在上是增函数;③当时,在和上是增函数,在上是减函数 (3).
【解析】
(1)当时,
由,解得,可知在上是增函数,在上是减函数.
∴的极大值为,无极小值.
①当时,在和上是增函数,在上是减函数;
②当时,在上是增函数;
③当时,在和上是增函数,在上是减函数
(3)当时,由(2)可知在上是增函数,
∴.
由对任意的a∈(2, 3),x1, x2∈[1, 3]恒成立,
∴
即对任意恒成立,
即对任意恒成立,
由于当时,,∴.
【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费(元) | 14.82 | 14.49 | |
平均每单里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).