题目内容
【题目】已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(﹣1)=﹣2,则f(2013)等于( )
A.2
B.﹣2
C.﹣1
D.2013
【答案】A
【解析】解:由f(x+4)=f(x)+f(2),取x=﹣2,得:f(﹣2+4)=f(﹣2)+f(2),即f(﹣2)=0,所以f(2)=0,
则f(x+4)=f(x)+f(2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(2013)=f(4×503+1)=f(1)=﹣f(﹣1)=﹣(﹣2)=2.
故选A.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).
练习册系列答案
相关题目