题目内容
若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为________.
16
【解析】因为点(1,0),(-1,0)在f(x)的图象上,且图象关于直线x=-2对称,所以点(-5,0),(-3,0)必在f(x)的图象上,所以f(-5)=(1-25)(25-5a+b)=0,f(-3)=(1-9)(9-3a+b)=0,联立,解得a=8,b=15,所以f(x)=(1-x2)(x2+8x+15),即f(x)=-(x+1)(x-1)(x+3)(x+5)=-(x2+4x+3)(x2+4x-5).令t=x2+4x=(x+2)2-4≥-4,则f(x)=-(t+3)(t-5)=-(t-1)2+16,当t=1时,f(x)max=16.
练习册系列答案
相关题目