题目内容
已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
(1)a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.(2)(-∞,1]
【解析】(1)g(x)=ax2-2ax+1+b,由题意得
①得
②得 (舍).
∴a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.
(2)不等式f(2x)-k·2x≥0,即2x+-2≥k·2x,
∴k≤-2·+1.
设t=,则k≤t2-2t+1,∵x∈[-1,1],故t∈.
记h(t)=t2-2t+1,∵t∈,∴h(t)max=1,
故所求k的取值范围是(-∞,1]
练习册系列答案
相关题目