题目内容
【题目】已知动点满足:
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设是轨迹上的两个动点,线段的中点在直线上,线段的中垂线与交于两点,是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ).
【解析】分析:(1)利用椭圆定义即可得到动点的轨迹的方程。
(2)讨论直线存在和不存在,当斜率存在时,设存在点直线的斜率为,运用点差法可得,得到的直线方程为,然后联立直线与椭圆方程求解。
详解:(Ⅰ);
(Ⅱ)当直线垂直于轴时,直线方程为,
此时,,不合题意;
当直线不垂直于轴时,设存在点,直线的斜率为,
由得:,则
故,此时,直线斜率为,的直线方程为
即
联立消去,整理得:
所以
由题意,于是
,因为在椭圆内,,符合条件;
综上:存在两点符合条件,坐标为.
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天时间与水深(单位:米)的关系表:
时刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)请用一个函数近似地描述这个港口的水深y与时间t的函数关系;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.
①如果该船是旅游船,1:00进港,希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?
②如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?
【题目】将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为;选出每行标号最大的卡片,将这些卡片中标号最小的数设为.
甲同学认为有可能比大,乙同学认为和有可能相等,那么甲乙两位同学的说法中( )
A. 甲对乙不对 B. 乙对甲不对 C. 甲乙都对 D. 甲乙都不对
【题目】某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
玩手机 | 不玩手机 | 合计 | |
学习成绩优秀 | 8 | ||
学习成绩不优秀 | 16 | ||
合计 | 30 |
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.