题目内容
【题目】已知函数=2cos(ωx)(ω>0)满足:f()=f(),且在区间(,)内有最大值但没有最小值,给出下列四个命题:P1:在[0,2π]上单调递减;P2:的最小正周期是4π;P3:的图象关于直线x对称;P4:的图象关于点(,0)对称.其中的真命题是( )
A.P1,P2B.P2,P4C.P1,P3D.P3,P4
【答案】B
【解析】
根据对称性和最值求出函数解析式,即可判定单调性,周期和对称性.
函数=2cos(ωx)(ω>0)满足:f()=f(),
即对称轴,
且在区间(,)内有最大值但没有最小值,
,且,
即,所以,
所以,
对于P1:,所以在[0,2π]上不单调,P1不是真命题;
P2:的最小正周期是4π,P2是真命题;
P3:不是最值,的图象不关于直线x对称,P3不是真命题;
P4:,的图象关于点(,0)对称,P4是真命题.
故选:B
【题目】某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.
(1)请计算高一年级和高二年级成绩小于60分的人数;
(2)完成下面列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?
成绩小于60分人数 | 成绩不小于60分人数 | 合计 | |
高一 | |||
高二 | |||
合计 |
附:临界值表及参考公式:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:
x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程的系数公式:
参考数据:2×18+3×27+4×32+5×35=420
【题目】某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。根据以往100天的资料统计,得到如下需求量表。该蛋糕店一天制作了这款蛋糕个,以(单位:个,,)表示当天的市场需求量,(单位:元)表示当天出售这款蛋糕获得的利润.
需求量/个 | |||||
天数 | 15 | 25 | 30 | 20 | 10 |
(1)当时,若时获得的利润为,时获得的利润为,试比较和的大小;
(2)当时,根据上表,从利润不少于570元的天数中,按需求量分层抽样抽取6天.
(i)求此时利润关于市场需求量的函数解析式,并求这6天中利润为650元的天数;
(ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为,求随机变量的分布列及数学期望.