题目内容

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

【答案】(1)证明见解析.

(2) .

【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BFPFBFEF,又因为利用线面垂直的判定定理可以得出BF⊥平面PEF平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.

(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标求得平面ABFD的法向量DP与平面ABFD所成角为,利用线面角的定义,可以求得得到结果.

详解:(1)由已知可得,BFPFBFEF,又所以BF⊥平面PEF.

平面ABFD,所以平面PEF⊥平面ABFD.

(2)作PHEF,垂足为H.由(1)得,PH⊥平面ABFD.

H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系Hxyz.

由(1)可得,DEPE.DP=2,DE=1,所以PE=.PF=1,EF=2,故PEPF.

可得.

为平面ABFD的法向量.

DP与平面ABFD所成角为,则.

所以DP与平面ABFD所成角的正弦值为.

练习册系列答案
相关题目

【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).

表1:

编号\测试项目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

规定:每项测试合格得5分,不合格得0分.

(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.

①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;

②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;

(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):

表2:

测试项目

1

2

3

4

5

实测合格人数

8

8

7

7

2

定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:

表3:

测试项目

1

2

3

4

5

预测前预估难度

0.9

0.8

0.7

0.6

0.4

判断本次测试的难度预估是否合理.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网