题目内容
【题目】已知函数,是常数且.
(1)若曲线在处的切线经过点,求的值;
(2)若(是自然对数的底数),试证明:①函数有两个零点,②函数的两个零点满足.
【答案】(1)(2)见解析
【解析】
(1)求出函数的导数,根据切线的斜率求出a的值即可;(2)对函数f(x)求导,根据函数单调性得到函数的最大值且最大值大于0,可知函数有两个零点,根据零点存在性定理可知两个零点,因为,即,所以问题转化为只要证明x1> -x2即可.
(1)切线的斜率
,
解,得
(2)①解,得
当时,;当时,,
所以在处取得最大值
,因为,所以,在区间有零点,
因为在区间单调递增,所以在区间有唯一零点.
由幂函数与对数函数单调性比较及的单调性知,在区间有唯一零点,从而函数有两个零点.
②不妨设,作函数,,
则,
所以,即,
又,所以
因为,所以,因为在区间单调递减,
所以,
又,,所以
练习册系列答案
相关题目
【题目】南京市自年成功创建“国家卫生城市”以来,已经连续三次通过“国家卫生城市”复审,年下半年,南京将迎来第四次复审.为了了解市民绿色出行的意识,现从某单位随机抽取名职工,统计了他们一周内路边停车的时间(单位:),整理得到数据分组及频率分布直方图如下:
组号 | 分组 | 频数 |
(1)从该单位随机选取一名职工,试估计其在该周内路边停车的时间少于小时的概率;
(2)求频率分布直方图中,的值.
【题目】设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点 |
B.存在定点P不在M中的任一条直线上 |
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上 |
D.M中的直线所能围成的正三角形面积都相等 |
其中真命题的代号是 (写出所有真命题的代号).