题目内容

18.已知F1,F2是双曲线的两个焦点,P,Q是过点F1且垂直于实轴所在直线的双曲线的弦,∠PF2Q=90°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{2}+1$C.$\sqrt{2}-1$D.$\frac{{\sqrt{2}}}{2}+1$

分析 根据PQ是经过F1且垂直于x轴的双曲线的弦,∠PF2Q=90°,可得|PF1|=|F1F2|,从而可得e的方程,即可求得双曲线的离心率.

解答 解:∵PQ是经过F1且垂直于x轴的双曲线的弦,∠PF2Q=90°,
∴|PF1|=|F1F2|
∴$\frac{{b}^{2}}{a}$=2c
∴e2-2e-1=0
∴e=1±$\sqrt{2}$
∵e>1
∴e=1+$\sqrt{2}$
故选:B.

点评 本题考查双曲线的离心率,考查学生的计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网