题目内容
【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.
【答案】证明:(Ⅰ)连接OC,因为OA=OC,所以∠OAC=∠OCA,
因为CD为半圆的切线,所以OC⊥CD,
又因为AD⊥CD,所以OC∥AD,
所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.
(Ⅱ)解:由(Ⅰ)知=,∴BC=CE,
连接CE,因为ABCE四点共圆,∠B=∠CED,所以cosB=cos∠CED,
所以,所以BC=2.
【解析】(Ⅰ)连接OC,因为OA=OC,所以∠OAC=∠OCA,再证明OC∥AD,即可证得AC平分∠BAD.
(Ⅱ)由(Ⅰ)知= , 从而BC=CE,利用ABCE四点共圆,可得∠B=∠CED,从而有 , 故可求BC的长.
练习册系列答案
相关题目