题目内容
【题目】设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)证明:为等比数列;
(3)求数列{an}的通项公式.
【答案】见解析
【解析】
(1)解:当n=2时,4S4+5S2=8S3+S1,
即4(a1+a2+a3+a4)+5(a1+a2)=8(a1+a2+a3)+a1,
整理得a4=,
又a2=,a3=,
所以a4=.
(2)证明:当n≥2时,有4Sn+2+5Sn=8Sn+1+Sn-1,
即4Sn+2+4Sn+Sn=4Sn+1+4Sn+1+Sn-1,
∴4(Sn+2-Sn+1)=4(Sn+1-Sn)-(Sn-Sn-1),
即an+2=an+1-an(n≥2).
经检验,当n=1时,上式成立.
∵===为常数,且a2-a1=1,
∴数列是以1为首项,为公比的等比数列.
(3)解:由(2)知,an+1-an= (n∈N*),
等式两边同乘2n,
得2nan+1-2n-1an=2(n∈N*).
又20a1=1,
∴数列{2n-1an}是以1为首项,2为公差的等差数列.
∴2n-1an=2n-1,
即an= (n∈N*).
则数列{an}的通项公式为an= (n∈N*).
练习册系列答案
相关题目
【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:
年龄(岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高关于年龄的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,.