题目内容

已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,fn(x)=fn-1′(x),则f2010(x)=
 
考点:导数的运算
专题:导数的概念及应用
分析:分别求出f2(x),f3(x),f4(x),…的导数,通过观察发现fn(x)的值周期性重复出现,周期为4,所以用2010除以4得到余数为2,所以f2010(x)=f2(x),求出即可.
解答: 解:∵f2(x)=(cosx)′=-sinx,
f3(x)=(-sinx)′=-cosx,
f4(x)=(-cosx)′=sinx,
f5(x)=(sinx)′=cosx,…,
由此可知fn(x)的值周期性重复出现,周期为4,
因为2010=4×502+2
故f2010(x)=f2(x)=-sinx.
故答案为:-sinx.
点评:本题主要考查导数的计算,根据导数的公式得到导数取值的周期性是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网