题目内容
已知曲线y=x3+,求曲线过点P(2,4)的切线方程;
4x-y-4=0或x-y+2=0.
解析
已知函数,. (1)求函数在上的最小值;(2)若存在是自然对数的底数,,使不等式成立,求实数的取值范围.
已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;
已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求f(x)的单调区间.
已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠时,求函数f(x)的单调区间与极值.
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2.①求b;②求函数f(x)的单调区间.
已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.
已知(,是常数),若对曲线上任意一点处的切线,恒成立,求的取值范围.