题目内容
【题目】如图,已知三棱柱的侧棱垂直于底面, ,点分别是和的中点.
(1)证明:平面;
(2)设,当为何值时,平面,试证明你的结论.
【答案】(Ⅰ)证明见解析(Ⅱ)时,
【解析】
试题(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.
试题解析:
(Ⅰ)取得中点,连接,因为分别为和的中点,
所以又因为,,
所以,, 5分
所以,因为,
所以; 6分
(Ⅱ)连接,设,则,
由题意知
因为三棱柱侧棱垂直于底面,
所以,
因为,点是的中点,所以,
, 9分
要使,
只需即可,
所以,即,
则时,. 12分
【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 800 |
不满意 | 300 | 200 | 400 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
【题目】随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:,,,,分别加以统计,得到下表,根据数据完成下列问题:
使用时间/时 | |||||
大学生/人 | 5 | 10 | 15 | 12 | 8 |
(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);
(2)用分层抽样的方法从使用手机时间在区间,,的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率.