题目内容
【题目】俗话说“三个臭皮匠,顶个诸葛亮”,从数学角度解释这句话的含义.
【答案】见解析.
【解析】
转化为三个臭皮匠解决一个问题的概率要大于诸葛壳解决这个问题的概率.利用对立事件的概率公式和相互独立事件的乘法公式可得结论.
解:“三个臭皮匠,顶个诸葛亮”比喻人多智慧多,有事情经过大家商量,就能商量出一个好办法来,从数学角度来理解,即三个臭皮匠解决一个问题的概率要大于诸葛壳解决这个问题的概率.
例如,假设诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人独立解题,则三个臭皮匠中至少有一人解出问题的概率一定大于诸葛亮解出问题的概率.
不妨设“臭皮匠老大解出问题”为事件A,“老二解出问题”为事件B,“老三解出问题”为事件C,“诸葛亮解出问题”为事件D.
于是三个臭皮匠中至少有一人解出问题的概率为,所以合三个臭皮匠之力解出问题的概率大过诸葛亮解出这个问题的概率.
【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:
方案一:每月底薪2000元,每销售一件产品提成15元;
方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.
(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;
(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:
月销售产品件数 | 300 | 400 | 500 | 600 | 700 |
次数 | 2 | 4 | 9 | 5 | 4 |
把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
|
| ||
75.3 | 24.6 | 18.3 | 101.4 |
(i)根据所给统计量,求关于的回归方程;
(ii)已知优等品的收益(单位:千元)与的关系,则当优等品的尺寸为为何值时,收益的预报值最大?(精确到0.1)
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,.