题目内容
【题目】在正方体中,、分别为、的中点,,,如图.
(1)若交平面于点,证明:、、三点共线;
(2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.
【答案】(1)证明见解析;(2)存在,且.
【解析】
(1)先得出为平面与平面的交线,然后说明点是平面与平面的公共点,即可得出、、三点共线;
(2)设,过点作交于点,然后证明出平面平面,再确定出点在上的位置即可.
(1),平面,平面,所以,点是平面和平面的一个公共点,同理可知,点也是平面和平面的公共点,则平面和平面的交线为,
平面,平面,所以,点也是平面和平面的公共点,由公理三可知,,因此,、、三点共线;
(2)如下图所示:
设,过点作交于点,
下面证明平面平面.
、分别为、的中点,,
平面,平面,平面.
又,平面,平面,平面,
,、平面,因此,平面平面.
下面来确定点的位置:
、分别为、的中点,所以,,且,则点为的中点,
易知,即,又,所以,四边形为平行四边形,,
四边形为正方形,且,则为的中点,所以,点为的中点,,
因此,线段上是否存在点,且时,平面平面.
【题目】2019年月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”关注程度,某机构随机抽取了年龄在岁之间的人进行调查,经统计“年轻人”与“中老年人”的人数之比为.
关注 | 不关注 | 合计 | |
年轻人 | |||
中老年人 | |||
合计 |
(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄段有关?
(2)现已用分层抽样的办法从中老年人中选取了人进行问卷调查.若再从这人中选取人进行面对面询问,求事件“选取的人中恰有人关注“中国湖北(潜江)龙虾节””的概率.
附:参考公式,其中.
临界值表:
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查.抽取的100人的数学与地理的水平测试成绩如下表:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人.
(1)在该样本中,数学成绩优秀率是30%,求a,b的值;
(2)在地理成绩及格的学生中,已知a≥10,b≥7,求数学成绩优秀的人数比及格的人数少的概率.