题目内容
【题目】设函数,其中.
(1)求函数的定义域(用区间表示);
(2)讨论函数在上的单调性;
(3)若,求上满足条件的的集合(用区间表示).
【答案】(1);
(2)单调递增区间为,,
递减区间为,;
(3)
.
【解析】
试题(1)由已知条件得到或,对上述两个不等式进行求解,并比较端点值的大小,从而求出函数的定义域;(2)求导,并求出方程的根,求出不等式的解集,并与定义域取交集得到函数的单调递增区间,用同样的办法求出函数的单调递减区间,但需注意比较各端点值得大小;(3)先求出方程的解,然后结合函数的单调性以及函数的定义域得到不等式的解集合.
试题解析:(1)可知,
,
或,
或,
或,
或或,
所以函数的定义域为
;
(2),
由得,即,
或,结合定义域知或,
所以函数的单调递增区间为,,
同理递减区间为,;
(3)由得,
,
,
,
或或或,
,,,
,,
结合函数的单调性知的解集为
.
【题目】十三届全国人大二次会议于2019年3月5日在京召开为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从全校学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 80 | 40 |
女生 | 30 | 30 |
(1)根据上表说明,在犯错误的概率不超过1%的前提下,能否认为该校大学生收看开幕会与性别有关?(计算结果精确到0.001)
(2)现从随机抽取的学生中,采用按性别分层抽样的方法选取6人,来参加2019年两会的志愿者宣传活动,若从这6人中随机选取2人到各班级宣传介绍,求恰好选到一名男生和一名女生的概率. 附,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,