题目内容
【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且, , .
(1)若, 分别为, 的中点,求证: 平面;
(2)若, 与平面所成角的正弦值为,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.
试题解析:
(1)连接,因为四边形为菱形,所以.
因为平面平面,平面平面, 平面, ,所以平面.
又平面,所以.
因为,所以.
因为,所以平面.
因为分别为, 的中点,所以,所以平面
(2)设,由(1)得平面.
由, ,得, .
过点作,与的延长线交于点,取的中点,连接, ,如图所示,
又,所以为等边三角形,所以,又平面平面,平面平面, 平面,故平面.
因为为平行四边形,所以,所以平面.
又因为,所以平面.
因为,所以平面平面.
由(1),得平面,所以平面,所以.
因为,所以平面,所以是与平面所成角.
因为, ,所以平面, 平面,因为,所以平面平面.
所以, ,解得.
在梯形中,易证,分别以, , 的正方向为轴, 轴, 轴的正方向建立空间直角坐标系.
则, , , , , ,
由,及,得,所以, , .
设平面的一个法向量为,由得令,得m=(3,1,2)
设平面的一个法向量为,由得令,得.
所以
又因为二面角是钝角,所以二面角的余弦值是.
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,从参加体会交流的5人中,随机选出2人作重点发言,求恰好选出一名男生的概率.
参考公式:,其中
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |