题目内容
【题目】已知函数f(x)=a-.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的取值范围.
【答案】(1)f(0)=a-1;(2)见解析;(3)(-∞,2).
【解析】试题分析:(1)代入x=0即可得值;
(2)利用单调性的定义任取x1,x2∈R,且x1<x2,判断f(x1)-f(x2)与0的大小即可;
(3)由奇函数的定义f(-x)=-f(x),得a=1,进而由函数单调性解不等式即可.
试题解析:
(1)f(0)=a-=a-1.
(2)∵f(x)的定义域为R,
∴任取x1,x2∈R,且x1<x2,
则f(x1)-f(x2)=a--a+
=.
∵y=2x在R上单调递增,且x1<x2,
∴0<2x1<2x2,
∴2x1-2x2<0,2x1+1>0,2x2+1>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),∴f(x)在R上单调递增.
(3)∵f(x)是奇函数,
∴f(-x)=-f(x),
即a-=-a+,解得a=1.
[或用f(0)=0求解]
∴f(ax)<f(2)即为f(x)<f(2).
又∵f(x)在R上单调递增,
∴x<2.(或代入化简亦可)
故x的取值范围为(-∞,2).
【题目】第届夏季奥林匹克运动会将于 2016 年 8 月 5 日—21 日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据( 单位: 枚).
第届伦敦 | 第届 北京 | 第届雅典 | 第届悉尼 | 第届亚特兰大 | |
中国 | |||||
俄罗斯 |
(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图, 并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度( 不要求计算出具体数值, 给出结论即可);
(2)甲、 乙、 丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多( 假设两国代表团获得的金牌数不会相等) , 规定甲、 乙、 丙必须在两个代表团中选一个, 已知甲、 乙猜中国代表团的概率都为, 丙猜中国代表团的概率为 , 三人各自猜哪个代表团的结果互不影响.现让甲、 乙、 丙各猜一次, 设三人中猜中国代表团的人数为,求的分布列及数学期望.
【题目】大家知道, 莫言是中国首位获得诺贝尔奖的文学家, 国人欢欣鼓舞.某高校文学社从男女生中各抽取名同学调查对莫言作品的了解程度, 结果如下:
阅读过莫言的作品数( 篇) | |||||
男生 | |||||
女生 |
(1)试估计该校学生阅读莫言作品超过篇的概率;
(2)对莫言作品阅读超过篇的则称为“对莫言作品非常了解” , 否则为“ 一般了解” .根据题意完成下表, 并判断能否在犯错误的概率不超过的前提下, 认为对莫言作品非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,其中
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
平均车速超过 人数 | 平均车速不超过 人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(Ⅱ )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式: ,其中.
参考数据:
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |