ÌâÄ¿ÄÚÈÝ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãÓëÅ×ÎïÏßy2=8$\sqrt{6}$xµÄ½¹µãÖغϣ¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{\sqrt{6}}{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßx=t£¨t£¾0£©ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÒÔÏ߶ÎABΪֱ¾¶×÷Ô²M£¬ÈôÔ²MÓëyÖáÏàÇУ¬ÇóÖ±Ïßx-$\sqrt{3}$y+1=0±»Ô²MËù½ØµÃµÄÏÒ³¤£®

·ÖÎö £¨¢ñ£©ÓÉÅ×ÎïÏß${y}^{2}=8\sqrt{6}x$µÄ½¹µã×ø±êΪ£¨$2\sqrt{6}£¬0$£©£¬µÃµ½c=$2\sqrt{6}$£¬ÓÖÀëÐÄÂÊÒÑÖª£¬¹ÊµÃÍÖÔ²·½³Ì£®
£¨¢ò£©ÓÉÌâÒâÖªM£¬Ô²ÐÄMΪÏ߶ÎABÖе㣬ÇÒλÓÚxÖáµÄÕý°ëÖᣬ¹ÊÉèMµÄ×ø±êΪ£¨t£¬0£©£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵþàÀëºÍ°ë¾¶ÒÔ¼°ÏÒ³¤µÄÒ»°ë¹¹³ÉÖ±½ÇÈý½ÇÐΣ¬ÀûÓù´¹É¶¨ÀíÇó½â

½â´ð ½â£º£¨¢ñ£©ÒòΪÅ×ÎïÏß${y}^{2}=8\sqrt{6}x$µÄ½¹µã×ø±êΪ£¨$2\sqrt{6}£¬0$£©£¬ËùÒÔc=$2\sqrt{6}$£¬¡­£¨2·Ö£©
ÓÖÍÖÔ²µÄÀëÐÄÂÊ$e=\frac{c}{a}=\frac{2\sqrt{6}}{a}=\frac{\sqrt{6}}{3}$£¬ËùÒÔa=6£¬b2=a2-c2=12
ËùÒÔÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{12}=1$£»¡­£¨5·Ö£©
£¨¢ò£©ÓÉÌâÒâÖªM£¬Ô²ÐÄMΪÏ߶ÎABÖе㣬ÇÒλÓÚxÖáµÄÕý°ëÖᣬ¹ÊÉèMµÄ×ø±êΪ£¨t£¬0£©
ÒòΪԲMÓëyÖáÏàÇУ¬²»·ÁÉèµãBÔÚµÚÒ»ÏóÏÞ£¬ÓÖMA=MB=t£¬ËùÒÔB£¨t£¬t£©
¡à$\frac{{t}^{2}}{36}+\frac{{t}^{2}}{12}=1£¨t£¾0£©$    ½âµÃt=3£¬¡­£¨8·Ö£©
¡àÔ²ÐÄM£¨3£¬0£©£¬°ë¾¶r=3
¡àÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=9£»¡­£¨10·Ö£©
ÓÖÔ²ÐÄMµ½Ö±Ïßx-$\sqrt{3}$y+1=0µÄ¾àÀë$d=\frac{|3-0+1|}{2}=2$
ËùÒÔ£¬Ö±Ïßx-$\sqrt{3}$y+1=0±»Ô²MËù½ØµÃµÄÏÒ³¤Îª£º
$2\sqrt{{r}^{2}-{d}^{2}}=2\sqrt{9-4}=2\sqrt{5}$£® ¡­£¨13·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏߣ¨°üÀ¨Ô²£©µÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌâÐÍ£¬Ôڸ߿¼ÎÄ¿ÆÖг£ÓÐÉæ¼°£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø