题目内容
【题目】设函数已知函数f(x)=x3+ax2+bx+c在x=﹣ 和x=1处取得极值.
(1)求a,b的值及其单调区间;
(2)若对x∈[﹣1,2]不等式f(x)≤c2恒成立,求c的取值范围.
【答案】
(1)解;f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b
由 ,解得,a=﹣ ,b=﹣2,
f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),
函数f(x)的单调区间如下表:
x | (﹣∞,﹣ ) | ﹣ | (﹣ ,1) | 1 | (1,+∞) |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
所以函数f(x)的递增区间是(﹣∞,﹣ )和(1,+∞),递减区间是(﹣ ,1).
(2)解;f(x)=x3﹣ x2﹣2x+c,x∈[﹣1,2],
当x=﹣ 时,f(x)= +c为极大值,而f(2)=2+c,所以f(2)=2+c为最大值.
要使f(x)<c2对x∈[﹣1,2]恒成立,须且只需c2>f(2)=2+c.
解得c<﹣1或c>2
【解析】(1)求出f′(x),因为函数在x=﹣ 与x=1时都取得极值,所以得到f′(﹣ )=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间;(2)根据(1)函数的单调性,由于x∈[﹣1,2]恒成立求出函数的最大值值为f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范围即可
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.
【题目】靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义. 2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查. 某城市调查体统计结果如下表:
性别 中国政府是否 需要在钓鱼岛和其他争议 问题上持续对日强硬 | 男 | 女 |
需要 | 50 | 250 |
不需要 | 100 | 150 |
(1) 试估计这七个代表性城市的普通民众中,认为 “中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众所占比例;
(2) 能否有以上的把握认为这七个代表性城市的普通民众的民意与性别有关?
(3) 从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为,求的分布列.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |