题目内容
【题目】函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象如图所示,将f(x)的图象向左平移 个单位后的解析式为( )
A.y=2sin(2x﹣ )
B.y=2sin(2x+ )
C.y=2sin(2x)
D.y=2sin(2x+ )
【答案】C
【解析】解:根据函数f(x)=2sin(ωx+φ)的部分图象知, T= ﹣(﹣ )= π,解得T=π;
∴ω= =2;
根据五点法画正弦函数图象,
知x= 时,2× +φ= ,解得φ=﹣ ;
∴f(x)=2sin(2x﹣ ),
将f(x)的图象向左平移 个单位后,
得到y=2sin[2(x+ )﹣ ]=2sin(2x).
故选:C.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)写出m,n的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;
(Ⅱ)记C组步数数据的平均数与方差分别为v1, ,E组步数数据的平均数与方差分别为v2, ,试分别比较v1与v2, 与的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.