题目内容
【题目】已知函数,.
(1)当为何值时,轴为曲线的切线;
(2)用表示、中的最大值,设函数,当时,讨论零点的个数.
【答案】(1);(2)见解析.
【解析】
(1)设切点坐标为,然后根据可解得实数的值;
(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.
(1),,
设曲线与轴相切于点,则,
即,解得.
所以,当时,轴为曲线的切线;
(2)令,,
则,,由,得.
当时,,此时,函数为增函数;当时,,此时,函数为减函数.
,.
①当,即当时,函数有一个零点;
②当,即当时,函数有两个零点;
③当,即当时,函数有三个零点;
④当,即当时,函数有两个零点;
⑤当,即当时,函数只有一个零点.
综上所述,当或时,函数只有一个零点;
当或时,函数有两个零点;
当时,函数有三个零点.
练习册系列答案
相关题目