题目内容
【题目】已知全集
(1)若,求实数q的取值范围;
(2)若中有四个元素,求和q的值.
【答案】(1);
(2), ={1,3,4,5}
【解析】试题分析:(1)若 =U,则A=,根据一元二次方程根的关系即可求q的取值范围;
(2)若中有四个元素,则等价为A为单元素集合,然后进行求解即可.
试题解析:
(1)∵A=U,
∴A=,即方程x2﹣5qx+4=0无解,或方程x2﹣5qx+4=0的解不在U中.
∴△=25q2﹣16<0,∴<q<,
若方程x2﹣5qx+4=0的解不在U中,
此时满足判别式△=25q2﹣16≥0,即p≥或p≤﹣,
由12﹣5q1+4≠0得q≠1;
由22﹣5q2+4≠0得q≠;
同理,由3、4、5不是方程的根,依次可得q≠,q≠1,q≠;
综上可得所求范围是{q|q∈R,且q≠,q≠1,q≠}.
(2)∵A中有四个元素,∴A为单元素集合,则△=25q2﹣16=0,
即q=±,
当A={1}时,q=1,不满足条件.;
当A={2}时,q=,满足条件.;
当A={3}时,q=,不满足条件.;
当A={4}时,q=1,不满足条件.;
当A={5}时,q=,不满足条件.,
∴q=,此时A={2},
对应的UA={1,3,4,5}.
练习册系列答案
相关题目