题目内容
【题目】选修4-4:坐标系与参数方程
已知在直角坐标系中,曲线的参数方程为(为参数),现以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.
【答案】(1),;(2),.
【解析】
试题分析:(1)把曲线的参数方程分类参数,根据同角三角函数的基本关系消去参数得到其普通方程,根据把直线的极坐标方程化成直角坐标方程;(2)设,由点到直线的距离公式得到距离关于参数的的函数关系,通过三角恒等变换和三角函数的性质得到最小值和相应点的坐标.
试题解析:(1)由题意知曲线的参数方程可化简为,
..................3分
由直线的极坐标方程可得直角坐标方程为...................5分
(2)若点是曲线上任意一点,则可设,
设其到直线的距离为,则..............7分
化简得,当,即时,......................9分
此时点的坐标为 ……………………10分
【题目】化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间 | |||||
频数 | 20 | 40 | 80 | 50 | 10 |
男性用户:
分值区间 | |||||
频数 | 45 | 75 | 90 | 60 | 30 |
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列列联表,并回答是否有的把握认为性别对手机的“认可”有关:
女性用户 | 男性用户 | 合计 | |
“认可”手机 | |||
“不认可”手机 | |||
合计 |
附:
0.05 | 0.01 | |
3.841 | 6.635 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.