题目内容
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,左焦点,直线与椭圆交于两点, 为椭圆上异于的点.
(1)求椭圆的方程;
(2)若,以为直径的圆过点,求圆的标准方程;
(3)设直线与轴分别交于,证明: 为定值.
【答案】(1)(2)(3)见解析
【解析】试题分析:(1)根据离心率为,左焦点,可求出和,从而求出椭圆的方程;(2)设,则,且,由,以为直径的圆过点可得即,从而可求出圆的标准方程;(3)设,则的方程为,求出两点的纵坐标,则 ,化简求得.
试题解析:(1)∵且
∴, .
∴椭圆方程为.
(2)设,则,且.①
∵以为直径的圆过点
∴
∴,
又∵,
∴.②
由①②解得: ,或(舍)
∴.
又∵圆的圆心为的中点,半径为,
∴圆的标准方程为.
(3)设,则的方程为,若不存在,显然不符合条件.
令得;同理,
∴ 为定值.
【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:
车速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次数y | 1 | 3 | 6 | 9 | 11 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+;
(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.
附:=,=-
【题目】一研究性学习小组对春季昼夜温差大小与某大豆种子发芽多少之间的关系进行分析研究,他们分别记录了4月1日至4月5日的每天昼夜温差与实验室每天每100颗种子的发芽数,得到如下数据:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差摄氏度 | 8 | 12 | 13 | 11 | 10 |
发芽数颗 | 18 | 26 | 30 | 25 | 20 |
该学习组所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻2天的数据的概率;
(2)若选取的是4月1日与4月5日这2组数据做检验,请根据4月2日至4月4日这3组数据求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)所得的线性回归方程是否可靠?
参考公式和数据:,;,>