ÌâÄ¿ÄÚÈÝ
±¾Ì⣨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿСÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£®×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=ÓÐÒ»¸öÊôÓÚÌØÕ÷Öµ1µÄÌØÕ÷ÏòÁ¿£®
£¨¢ñ£© Çó¾ØÕóA£»
£¨¢ò£© ¾ØÕóB=£¬µãO£¨0£¬0£©£¬M£¨2£¬-1£©£¬N£¨0£¬2£©£¬Çó¡÷OMNÔÚ¾ØÕóABµÄ¶ÔÓ¦±ä»»×÷ÓÃÏÂËùµÃµ½µÄ¡÷O'M'N'µÄÃæ»ý£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¨tΪ²ÎÊý£©£®ÒÔÖ±½Ç×ø±êϵxOyÖеÄÔµãOΪ ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬԲCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È+3=0£¬
£¨¢ñ£© ÇólµÄÆÕͨ·½³Ì¼°CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© PΪԲCÉϵĵ㣬ÇóPµ½l¾àÀëµÄÈ¡Öµ·¶Î§£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖª¹ØÓÚxµÄ²»µÈʽ£º|x-1|+|x+2|¡Ýa2+2|a|-5¶ÔÈÎÒâx¡ÊRºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©¸ù¾Ý¾ØÕóA=ÓÐÒ»¸öÊôÓÚÌØÕ÷Öµ1µÄÌØÕ÷ÏòÁ¿£¬¿ÉµÃ£¬´Ó¶ø¿É¾ØÕóA£»
£¨¢ò£©ÏȼÆËãAB£¬´Ó¶ø¿ÉµÃµãO£¬M£¬N±ä³ÉµãO¡ä£¨0£¬0£©£¬M¡ä£¨4£¬0£©£¬N¡ä£¨0£¬4£©£¬¼´¿É¼ÆËã¡÷O'M'N'µÄÃæ»ý£»£¨2£©£¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬¿ÉµÃÆÕͨ·½³Ì£¬Ô²CµÄ¼«×ø±ê·½³ÌÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©»¯Ô²µÄÆÕͨ·½³ÌΪ±ê×¼·½³Ì£¬È·¶¨Ô²ÐÄÓë°ë¾¶£¬Çó³öµãCµ½lµÄ¾àÀ룬´Ó¶ø¿ÉÇóPµ½l¾àÀëµÄÈ¡Öµ·¶Î§£»
£¨3£©Çó³ö|x-1|+|x+2|µÄ×îСֵ£¬´Ó¶ø|x-1|+|x+2|¡Ýa2+2|a|-5¶Ô?x¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚa2+2|a|-5¡Ü3£¬ÓÉ´Ë¿ÉÇóaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©£¨¢ñ£©ÓÉÒÑÖªµÃ£¬¡à
½âµÃ£¬¹ÊA=£®
£¨¢ò£©AB==£¬
¡à£¬£¬£¬
¼´µãO£¬M£¬N±ä³ÉµãO¡ä£¨0£¬0£©£¬M¡ä£¨4£¬0£©£¬N¡ä£¨0£¬4£©£¬¡÷O'M'N'µÄÃæ»ýΪ×4×4=8£®
£¨2£©£¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¨tΪ²ÎÊý£©£¬¢Ù×-¢Ú£¬¿ÉµÃÆÕͨ·½³ÌΪ=0£¬
Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È+3=0£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+3=0£®¡£¨4·Ö£©
£¨¢ò£© CµÄ±ê×¼·½³ÌΪ£¨x-2£©2+y2=1£¬Ô²ÐÄC£¨2£¬0£©£¬°ë¾¶Îª1£¬
µãCµ½lµÄ¾àÀëΪ d=£¬
¡àPµ½l¾àÀëµÄÈ¡Öµ·¶Î§ÊÇ£®
£¨3£©¡ß|x-1|+|x+2|¡Ý|£¨x-1£©-£¨x+2£©|=3£¬
¡à|x-1|+|x+2|¡Ýa2+2|a|-5¶Ô?x¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚa2+2|a|-5¡Ü3£¬
¼´£¨|a|-2£©£¨|a|+4£©¡Ü0
¡à|a|¡Ü2£¬
¡àaµÄÈ¡Öµ·¶Î§ÊÇ[-2£¬2]£®
µãÆÀ£º±¾Ì⿼²é¾ØÕó¡¢²ÎÊý·½³ÌÓ뼫×ø±ê·½³Ì¡¢¿¼²é²»µÈʽÎÊÌ⣬½âÌâµÄ¹Ø¼üÊÇÃ÷È··½·¨¡¢ÕÆÎÕ¹«Ê½£®
£¨¢ò£©ÏȼÆËãAB£¬´Ó¶ø¿ÉµÃµãO£¬M£¬N±ä³ÉµãO¡ä£¨0£¬0£©£¬M¡ä£¨4£¬0£©£¬N¡ä£¨0£¬4£©£¬¼´¿É¼ÆËã¡÷O'M'N'µÄÃæ»ý£»£¨2£©£¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬¿ÉµÃÆÕͨ·½³Ì£¬Ô²CµÄ¼«×ø±ê·½³ÌÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©»¯Ô²µÄÆÕͨ·½³ÌΪ±ê×¼·½³Ì£¬È·¶¨Ô²ÐÄÓë°ë¾¶£¬Çó³öµãCµ½lµÄ¾àÀ룬´Ó¶ø¿ÉÇóPµ½l¾àÀëµÄÈ¡Öµ·¶Î§£»
£¨3£©Çó³ö|x-1|+|x+2|µÄ×îСֵ£¬´Ó¶ø|x-1|+|x+2|¡Ýa2+2|a|-5¶Ô?x¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚa2+2|a|-5¡Ü3£¬ÓÉ´Ë¿ÉÇóaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©£¨¢ñ£©ÓÉÒÑÖªµÃ£¬¡à
½âµÃ£¬¹ÊA=£®
£¨¢ò£©AB==£¬
¡à£¬£¬£¬
¼´µãO£¬M£¬N±ä³ÉµãO¡ä£¨0£¬0£©£¬M¡ä£¨4£¬0£©£¬N¡ä£¨0£¬4£©£¬¡÷O'M'N'µÄÃæ»ýΪ×4×4=8£®
£¨2£©£¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¨tΪ²ÎÊý£©£¬¢Ù×-¢Ú£¬¿ÉµÃÆÕͨ·½³ÌΪ=0£¬
Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È+3=0£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+3=0£®¡£¨4·Ö£©
£¨¢ò£© CµÄ±ê×¼·½³ÌΪ£¨x-2£©2+y2=1£¬Ô²ÐÄC£¨2£¬0£©£¬°ë¾¶Îª1£¬
µãCµ½lµÄ¾àÀëΪ d=£¬
¡àPµ½l¾àÀëµÄÈ¡Öµ·¶Î§ÊÇ£®
£¨3£©¡ß|x-1|+|x+2|¡Ý|£¨x-1£©-£¨x+2£©|=3£¬
¡à|x-1|+|x+2|¡Ýa2+2|a|-5¶Ô?x¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚa2+2|a|-5¡Ü3£¬
¼´£¨|a|-2£©£¨|a|+4£©¡Ü0
¡à|a|¡Ü2£¬
¡àaµÄÈ¡Öµ·¶Î§ÊÇ[-2£¬2]£®
µãÆÀ£º±¾Ì⿼²é¾ØÕó¡¢²ÎÊý·½³ÌÓ뼫×ø±ê·½³Ì¡¢¿¼²é²»µÈʽÎÊÌ⣬½âÌâµÄ¹Ø¼üÊÇÃ÷È··½·¨¡¢ÕÆÎÕ¹«Ê½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿