题目内容
【题目】给出下列四个命题:
①“”是“”的必要不充分条件
②函数的最小值为2
③命题“,”的否定是“,”
④已知双曲线过点,且渐近线为,则离心率,其中所有正确命题的编号是:_______.
【答案】①④
【解析】
根据充分必要条件的关系和定义,可判断①;根据基本不等式成立条件,结合对勾函数求得最小值,即可判断②;根据含有量词的否定形式,可判断③;根据双曲线的渐近线方程,可设出标准方程,代入点的坐标,即可求得双曲线方程,进而求得离心率,即可判断④.
对于①,当时,满足,所以,反过来不成立,因而“”是“”的必要不充分条件,所以①正确;
对于②,函数,令,则,由对勾函数性质可知,当时取得最小值,,即的最小值为,所以②错误;
对于③,命题“,”的否定是“,”,所以③错误;
对于④,双曲线渐近线为,不妨设双曲线方程为,且过点,代入可得,所以,即,所以离心率为,所以④正确;
综上可知,正确的为①④,
故答案为:①④.
【题目】在抗击新冠肺炎疫情期间,很多人积极参与了疫情防控的志愿者活动.各社区志愿者服务类型有:现场值班值守,社区消毒,远程教育宣传,心理咨询(每个志愿者仅参与一类服务).参与A,B,C三个社区的志愿者服务情况如下表:
社区 | 社区服务总人数 | 服务类型 | |||
现场值班值守 | 社区消毒 | 远程教育宣传 | 心理咨询 | ||
A | 100 | 30 | 30 | 20 | 20 |
B | 120 | 40 | 35 | 20 | 25 |
C | 150 | 50 | 40 | 30 | 30 |
(1)从上表三个社区的志愿者中任取1人,求此人来自于A社区,并且参与社区消毒工作的概率;
(2)从上表三个社区的志愿者中各任取1人调查情况,以X表示负责现场值班值守的人数,求X的分布列;
(3)已知A社区心理咨询满意率为0.85,B社区心理咨询满意率为0.95,C社区心理咨询满意率为0.9,“,,”分别表示A,B,C社区的人们对心理咨询满意,“,,”分别表示A,B,C社区的人们对心理咨询不满意,写出方差,,的大小关系.(只需写出结论)
【题目】某市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年1月至2019年1月).
(1)试估计该市市民的平均购房面积.
(2)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.
(3)根据散点图选和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到0.001)./span>
参考数据:,,,,,,,,
参考公式:.