ÌâÄ¿ÄÚÈÝ
19£®ÒòΪÊÜÊг¡¾¼ÃµÄºê¹Ûµ÷¿Ø£¬Ä³ÉÌƷÿÔµĵ¥¼ÛºÍÏúÁ¿¾ù»áÉÏϲ¨¶¯£¬Ä³É̼ҶÔ2015ÄêµÄ1Ô·ݵ½4Ô·ݵÄÏúÊÛÁ¿x°Ù¼þºÍÀûÈóyÍòÔª½øÐÐͳ¼Æ·ÖÎö£¬µÃµ½Êý¾ÝµÄÉ¢µãͼÈçͼËùʾ£º£¨¢ñ£©¸ù¾ÝÉ¢µãͼ·Ö±ðÇó1¡«4Ô·ݵÄÏúÊÛÁ¿xºÍÀûÈóyµÄƽ¾ùÊý$\overline{x}$£¬$\overline{y}$£»
£¨¢ò£©ÎªÊ¹Í³¼Æ¸üΪ׼ȷ£¬¼ÌÐø¸ú×Ù5£¬6Ô·ݵÄÏúÊÛÁ¿ºÍÀûÈóÇé¿ö£¬µÃµ½5Ô·ݵÄÏúÊÛÁ¿Îª14°Ù¼þ¡¢ÀûÈóΪ6ÍòÔª£¬6Ô·ݵÄÏúÊÛÁ¿Îª16°Ù¼þ¡¢ÀûÈóΪ8ÍòÔª£®ÓÉ1¡«6Ô·ݵÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨¼ÆËãµÃµ½ÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ÖеÄ$\stackrel{¡Ä}{b}$=$\frac{4}{7}$£¬Çó$\stackrel{¡Ä}{a}$µÄÖµ£»
£¨¢ó£©ÊÔ¸ù¾Ý£¨¢ò£©ÖеÄÏßÐԻع鷽³Ì£¬Ô¤²âµ±ÏúÊÛÁ¿Îª18°Ù¼þʱµÄÀûÈó£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÉ¢µãͼÖÐ1¡«4Ô·ݸ÷¸öÔµÄÏúÊÛÁ¿xºÍÀûÈóy£¬½ø¶øÇó³öºá±êºÍ×ݱêµÄƽ¾ùÊý$\overline{x}$£¬$\overline{y}$£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©Ð´³öÑù±¾ÖÐÐĵ㣬½áºÏÒÑÖªµÄÏßÐԻع鷽³Ì£¬°ÑÑù±¾ÖÐÐĵã´úÈëÇó³öaµÄÖµ£®
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖеÄÏßÐԻع鷽³Ì£¬½«x=18´úÈë¿ÉÔ¤²âµ±ÏúÊÛÁ¿Îª18°Ù¼þʱµÄÀûÈó£®
½â´ð ½â£º£¨¢ñ£©$\overline{x}$=$\frac{1}{4}$£¨6+8+10+12£©=9£¬$\overline{y}$=$\frac{1}{4}$£¨2+3+5+6£©=4£® ¡£¨4·Ö£©
£¨¢ò£©1¡«6Ô·ݵÄƽ¾ùÏúÊÛÁ¿$\overline{x}$=$\frac{1}{6}$£¨6+8+10+12+14+16£©=11£¬
1¡«6Ô·ݵÄƽ¾ùÀûÈó$\overline{y}$=$\frac{1}{6}$£¨2+3+5+6+6+8£©=5£¬¡£¨6·Ö£©
¡àÕâ×éÊý¾ÝµÄÑù±¾ÖÐÐĵãÊÇ£¨11£¬5£©£¬
¡ß»Ø¹éÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ÖеÄ$\stackrel{¡Ä}{b}$=$\frac{4}{7}$£¬
°ÑÑù±¾ÖÐÐĵã´úÈëµÃa=-$\frac{9}{7}$£¬¡£¨8·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©ÖªÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=$\frac{4}{7}$x-$\frac{9}{7}$£¬
¡àµ±ÏúÊÛÁ¿Îª18°Ù¼þʱ£¬$\stackrel{¡Ä}{y}$=$\frac{4}{7}$¡Á18-$\frac{9}{7}$=9£¬¡£¨11·Ö£©
¡àµ±ÏúÊÛÁ¿Îª18°Ù¼þʱԤ²âÀûÈóΪ9ÍòÔª£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÊý¾ÝµÄ»Ø¹éÖ±Ïß·½³Ì£¬ÀûÓûعéÖ±Ïß·½³Ìºã¹ýÑù±¾ÖÐÐĵãÊǹؼü£®
x | 2 | 4 | 5 | 7 |
y | 1.5 | t | 4.2 | 5.5 |
A£® | -5 | B£® | 7 | C£® | 5 | D£® | -7 |
A£® | [1£¬3£© | B£® | £¨-¡Þ£¬1]¡È£¨3£¬+¡Þ£© | C£® | £¨1£¬3] | D£® | £¨-¡Þ£¬1£©¡È[3£¬+¡Þ£© |
A£® | 1 | B£® | 3 | C£® | 2 | D£® | ²»È·¶¨ |