题目内容

6.已知函数f(x)=$\frac{x^2}{{{x^2}+1}}$.
(1)证明对任意实数x,都有f(x)=f(|x|),说明f(x)在(0,+∞)上的单调性并证明之;
(2)记A=f(1)+f(2)+f(3)+f(4)+…+f(100),$B=f(1)+f(\frac{1}{2})+f(\frac{1}{3})+f(\frac{1}{4})+…+f(\frac{1}{100})$,求A+B的值;
(3)若实数x1,x2满足f(x1)+f(x2)>1.求证:|x1x2|>1.

分析 (1)对任意实数x,有$f(|x|)=\frac{{|x{|^2}}}{{|x{|^2}+1}}$=$\frac{x^2}{{{x^2}+1}}=f(x)$,利用定义法能证明f(x)在(0,+∞)上的单调递增.
(2)由已知得$f(x)+f(\frac{1}{x})$=1,由此能求出A+B的值.
(3)法一:由f(x1)+f(x2)>1,得到$\frac{{{x_1}^2}}{{{x_1}^2+1}}+\frac{{{x_2}^2}}{{{x_2}^2+1}}>1$,由此能证明|x1x2|>1.
法二:当f(x1)+f(x2)>1时,x1,x2均不为0,由f(x1)+f(x2)>1得f(x1)>1-f(x2),由此能证明|x1x2|>1.

解答 (1)解:∵函数f(x)=$\frac{x^2}{{{x^2}+1}}$,对任意实数x,都有f(x)=f(|x|),
∴对任意实数x,有$f(|x|)=\frac{{|x{|^2}}}{{|x{|^2}+1}}$=$\frac{x^2}{{{x^2}+1}}=f(x)$,(1分)
f(x)在(0,+∞)上的单调递增,证明如下:(2分)
任取x1,x2∈(0,+∞),x1<x2
则f(x1)-f(x2)=$\frac{{{x_1}^2}}{{{x_1}^2+1}}-\frac{{{x_2}^2}}{{{x_2}^2+1}}=\frac{{{x_1}^2({x_2}^2+1)-{x_2}^2({x_1}^2+1)}}{{({x_1}^2+1)({x_2}^2+1)}}$
=$\frac{{{x_1}^2-{x_2}^2}}{{({x_1}^2+1)({x_2}^2+1)}}=\frac{{({x_1}-{x_2})({x_1}+{x_2})}}{{({x_1}^2+1)({x_2}^2+1)}}$,
∵x2>x1>0,∴x1-x2<0,x1+x2>0
而$({x_1}^2+1)({x_2}^2+1)>0$,
∴$\frac{{({x_1}-{x_2})({x_1}+{x_2})}}{{({x_1}^2+1)({x_2}^2+1)}}<0$,即f(x1)<f(x2),
∴f(x)在(0,+∞)上的单调递增.(5分)
(2)解:当x≠0时,$f(x)+f(\frac{1}{x})=\frac{x^2}{{{x^2}+1}}+\frac{{\frac{1}{x^2}}}{{\frac{1}{x^2}+1}}=\frac{x^2}{{{x^2}+1}}+\frac{1}{{{x^2}+1}}=1$(7分)
∴$A+B=[f(1)+f(1)]+[f(2)+f(\frac{1}{2})]+…+[f(100)+f(\frac{1}{100})]$=100(9分)
(3)证法一:∵f(x1)+f(x2)>1,
∴$\frac{{{x_1}^2}}{{{x_1}^2+1}}+\frac{{{x_2}^2}}{{{x_2}^2+1}}>1$,∴${x_1}^2({x_2}^2+1)+{x_2}^2({x_1}^2+1)>({x_1}^2+1)({x_2}^2+1)$,∴${x_1}^2{x_2}^2>1$,
∴|x1x2|>1.(12分)
证法二:当f(x1)+f(x2)>1时,x1,x2均不为0,
否则,假设x1=0,则f(x1)=0,而f(x1)<1,则f(x1)+f(x2)<1,矛盾!(10分)
由f(x1)+f(x2)>1得f(x1)>1-f(x2
由结论(2)知$1-f({x_2})=f(\frac{1}{x_2})$,所以$f({x_1})>f(\frac{1}{x_2})$(11分)
又结合结论(1)有$f(|{x_1}|)>f(|\frac{1}{x_2}|)⇒|{x_1}|>|\frac{1}{x_2}|⇒$|x1x2|>1.
∴|x1x2|>1.(12分)

点评 本题考查函数的单调性的判断与证明,考查函数值的求法,考查不等式的证明,综合性强,难度大,解题时要认真审题,注意挖掘题设中的隐含条件合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网