题目内容
已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
(1)y=-2 (2)[1,+∞)
解:(1)当a=1时,f(x)=x2-3x+lnx,f′(x)=2x-3+.
因为f′(1)=0,f(1)=-2,
所以切线方程是y=-2.
(2)函数f(x)=ax2-(a+2)x+lnx的定义域是(0,+∞).
当a>0时,f′(x)=2ax-(a+2)+= (x>0).
令f′(x)=0,即f′(x)===0,
得x=或x=.
当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
当1<<e时,f(x)在[1,e]上的最小值f()<f(1)=-2,不合题意;
当≥e时,f(x)在[1,e]上单调递减.
所以f(x)在[1,e]上的最小值f(e)<f(1)=-2,不合题意.
综上a的取值范围为[1,+∞).
因为f′(1)=0,f(1)=-2,
所以切线方程是y=-2.
(2)函数f(x)=ax2-(a+2)x+lnx的定义域是(0,+∞).
当a>0时,f′(x)=2ax-(a+2)+= (x>0).
令f′(x)=0,即f′(x)===0,
得x=或x=.
当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
当1<<e时,f(x)在[1,e]上的最小值f()<f(1)=-2,不合题意;
当≥e时,f(x)在[1,e]上单调递减.
所以f(x)在[1,e]上的最小值f(e)<f(1)=-2,不合题意.
综上a的取值范围为[1,+∞).
练习册系列答案
相关题目