题目内容

)设(2-x)100=a0+a1x+a2x2+…+a100x100,求下列各式的值:
(1)a0;
(2)a1+a2+…+a100;
(3)a1+a3+a5+…+a99;
(4)(a0+a2+…+a100)2-(a1+a3+…+a99)2.
(1) 2100 (2)(2-)100-2100 (3) (4)1
(1)由(2-x)100展开式中的常数项为C·2100,
即a0=2100,或令x=0,则展开式可化为a0=2100.
(2)令x=1,可得
a0+a1+a2+…+a100=(2-)100.                             ①
∴a1+a2+…+a100=(2-)100-2100.
(3)令x=-1可得
a0-a1+a2-a3+…+a100=(2+)100.                          ②
与x=1所得到的①联立相减可得,
a1+a3+…+a99=.
(4)原式=[(a0+a2+…+a100)+(a1+a3+…+a99)]×[(a0+a2+…+a100)-(a1+a3+…+a99)]
=(a0+a1+a2+…+a100)(a0-a1+a2-a3+…+a98-a99+a100)
=(2-)100·(2+100="1."
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网