题目内容
9.计算定积分(1)${∫}_{0}^{π}$(sinx-cosx)dx;
(2)${∫}_{0}^{2}$|1-x|dx.
分析 (1)求出被积函数的原函数,将积分的上限、下限代入求值;
(2)利用绝对值的意义及积分的性质:区间的可加性;利用微积分基本定理求出值.
解答 解:(1)${∫}_{0}^{π}$(sinx-cosx)dx
=(-cosx-sinx)|0π
=(-cosπ)-(-cos0)
=2;
(2)${∫}_{0}^{2}$|1-x|dx
=${∫}_{0}^{1}$(1-x)dx+${∫}_{1}^{2}$(x-1)dx
=(x-$\frac{1}{2}$x2)${|}_{0}^{1}$+($\frac{1}{2}{x}^{2}$-x)${|}_{1}^{2}$
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-1)=0.
点评 本题考查利用微积分基本定理求积分值、考查定积分的性质:∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx.
练习册系列答案
相关题目
14.设f(x)=3x2-x+1,g(x)=2x2+x-1,x∈R,则f(x)与g(x)的大小关系是( )
A. | f(x)>g(x) | B. | f(x)≥g(x) | C. | f(x)=g(x) | D. | f(x)<g(x) |
18.不等式组$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集为{x|-2<x<4},则a的取值范围是( )
A. | a≤-4 | B. | a≥-4 | C. | a≤8 | D. | a≥8 |
19.若函数f(x)是R上的奇函数,则下列关系式恒成立的是( )
A. | f(x)-f(-x)≥0 | B. | f(x)-f(-x)≤0 | C. | f(x)•f(-x)≤0 | D. | f(x)•f(-x)≥0 |