题目内容
【题目】如图,在正方形ABCD-A1B1C1D1中,E,F,M分别是棱B1C1,BB1,C1D1的中点,是否存在过点E,M且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.
【答案】详见解析.
【解析】试题分析: 由正方体的特征及N为BB1的中点,可知平面A1FC与直线DD1相交,且交点为DD1的中点G.若过M,E的平面α与平面A1FCG平行,注意到EM∥B1D1∥FG,则平面α必与CC1相交于点N,结合M,E为棱C1D1,B1C1的中点,易知C1N∶C1C=.于是平面EMN满足要求.
试题解析:
如图,设N是棱C1C上的一点,且C1N=C1C时,平面EMN过点E,M且与平面A1FC平行.
证明如下:设H为棱C1C的中点,连接B1H,D1H.
∵C1N=C1C,
∴C1N=C1H.
又E为B1C1的中点,
∴EN∥B1H.
又CF∥B1H,
∴EN∥CF.
又EN平面A1FC,CF平面A1FC,
∴EN∥平面A1FC.
同理MN∥D1H,D1H∥A1F,
∴MN∥A1F.
又MN平面A1FC,A1F平面A1FC,
∴MN∥平面A1FC.
又EN∩MN=N,
∴平面EMN∥平面A1FC.
点睛:本题考查线面平行的判定定理和面面平行的判定定理的综合应用,属于中档题.直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; 平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面分别平行,则这两个平面平行.
【题目】(本小题满分12分,第(1)问 6 分,第(2)问 6 分)
某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销售量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?
【题目】电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.
观看方式 年龄(岁) | 电视 | 网络 |
150 | 250 | |
120 | 80 |
求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附: